Dissimilarity Vectors of Trees and Their Tropical Linear Spaces ( Extended

نویسندگان

  • Benjamin Iriarte Giraldo
  • Benjamin Iriarte
چکیده

We study the combinatorics of weighted trees from the point of view of tropical algebraic geometry and tropical linear spaces. The set of dissimilarity vectors of weighted trees is contained in the tropical Grassmannian, so we describe here the tropical linear space of a dissimilarity vector and its associated family of matroids. This gives a family of complete flags of tropical linear spaces, where each flag is described by a weighted tree. Résumé. Nous étudions les propriétés combinatoires des arbres pondérés avec le formalisme de la géométrie tropicale et des espaces linéaires tropicaux. L’ensemble de vecteurs de dissimilarité des arbres pondérés est contenu dans la grassmannienne tropicale, donc nous décrivons ici l’espace linéaire tropical d’un vecteur de dissimilarité et sa famille de matroı̈des associée. Cela permet d’obtenir une famille de drapeaux complets d’espaces linéaires tropicaux, où chaque drapeau est décrit par un arbre pondéré. Resumen. Estudiamos la combinatoria de los árboles valuados desde el punto de vista de la geometrı́a algebraica tropical y de los espacios lineales tropicales. El conjunto de los vectores de disimilaridad de un árbol valuado está contenido en el grassmanniano tropical y aquı́ describimos el espacio lineal tropical de un vector de disimilaridad y su familia asociada de matroides. Se obtiene entonces una familia de banderas completas de espacios lineales tropicales, donde cada bandera se describe mediante un árbol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissimilarity Vectors of Trees and Their Tropical Linear Spaces ( Extended Abstract )

We study the combinatorics of weighted trees from the point of view of tropical algebraic geometry and tropical linear spaces. The set of dissimilarity vectors of weighted trees is contained in the tropical Grassmannian, so we describe here the tropical linear space of a dissimilarity vector and its associated family of matroids. This gives a family of complete flags of tropical linear spaces, ...

متن کامل

Dissimilarity maps on trees and the representation theory of SLm(C)

We prove that m-dissimilarity vectors of weighted trees are points on the tropical Grassmannian, as conjecture by Cools in response to a question of Sturmfels and Pachter. We accomplish this by relating m-dissimilarity vectors to the representation theory of SLm(C).

متن کامل

Dissimilarity Vectors of Trees are Contained in the Tropical Grassmannian

In this short writing, we prove that the set of m-dissimilarity vectors of phylogenetic n-trees is contained in the tropical Grassmannian Gm,n, answering a question of Pachter and Speyer. We do this by proving an equivalent conjecture proposed by Cools.

متن کامل

On the relation between weighted trees and tropical Grassmannians

— In this article, we will prove that the set of 4-dissimilarity vectors of n-trees is contained in the tropical Grassmannian G4,n. We will also propose three equivalent conjectures related to the set of m-dissimilarity vectors of n-trees for the case m ≥ 5. Using a computer algebra system, we can prove these conjectures for m = 5. MSC.— 05C05, 05C12, 14M15

متن کامل

L-Infinity Optimization in Tropical Geometry and Phylogenetics

We investigate uniqueness issues that arise in l∞-optimization to linear spaces and Bergman fans of matroids. For linear spaces, we give a polyhedral decomposition of R based on the dimension of the set of l∞-nearest neighbors. This implies that the l∞-nearest neighbor in a linear space is unique if and only if the underlying matroid is uniform. For Bergman fans of matroids, we show that the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011